A massively parallel strategy for STR marker development, capture, and genotyping
نویسندگان
چکیده
Short tandem repeat (STR) variants are highly polymorphic markers that facilitate powerful population genetic analyses. STRs are especially valuable in conservation and ecological genetic research, yielding detailed information on population structure and short-term demographic fluctuations. Massively parallel sequencing has not previously been leveraged for scalable, efficient STR recovery. Here, we present a pipeline for developing STR markers directly from high-throughput shotgun sequencing data without a reference genome, and an approach for highly parallel target STR recovery. We employed our approach to capture a panel of 5000 STRs from a test group of diademed sifakas (Propithecus diadema, n = 3), endangered Malagasy rainforest lemurs, and we report extremely efficient recovery of targeted loci-97.3-99.6% of STRs characterized with ≥10x non-redundant sequence coverage. We then tested our STR capture strategy on P. diadema fecal DNA, and report robust initial results and suggestions for future implementations. In addition to STR targets, this approach also generates large, genome-wide single nucleotide polymorphism (SNP) panels from flanking regions. Our method provides a cost-effective and scalable solution for rapid recovery of large STR and SNP datasets in any species without needing a reference genome, and can be used even with suboptimal DNA more easily acquired in conservation and ecological studies.
منابع مشابه
CRISPR–Cas9-targeted fragmentation and selective sequencing enable massively parallel microsatellite analysis
Microsatellites are multi-allelic and composed of short tandem repeats (STRs) with individual motifs composed of mononucleotides, dinucleotides or higher including hexamers. Next-generation sequencing approaches and other STR assays rely on a limited number of PCR amplicons, typically in the tens. Here, we demonstrate STR-Seq, a next-generation sequencing technology that analyses over 2,000 STR...
متن کاملShort-read, high-throughput sequencing technology for STR genotyping.
DNA-based methods for human identification principally rely upon genotyping of short tandem repeat (STR) loci. Electrophoretic-based techniques for variable-length classification of STRs are universally utilized, but are limited in that they have relatively low throughput and do not yield nucleotide sequence information. High-throughput sequencing technology may provide a more powerful instrume...
متن کاملCorrigendum: MIPSTR: a method for multiplex genotyping of germline and somatic STR variation across many individuals.
Short tandem repeats (STRs) are highly mutable genetic elements that often reside in regulatory and coding DNA. The cumulative evidence of genetic studies on individual STRs suggests that STR variation profoundly affects phenotype and contributes to trait heritability. Despite recent advances in sequencing technology, STR variation has remained largely inaccessible across many individuals compa...
متن کاملUse of Sequenom Sample ID Plus® SNP Genotyping in Identification of FFPE Tumor Samples
Short tandem repeat (STR) analysis, such as the AmpFlSTR® Identifiler® Plus kit, is a standard, PCR-based human genotyping method used in the field of forensics. Misidentification of cell line and tissue DNA can be costly if not detected early; therefore it is necessary to have quality control measures such as STR profiling in place. A major issue in large-scale research studies involving archi...
متن کاملGenotyping of Five Polymorphic STR Loci in Iranian Province of Isfahan
Genotyping for five short tandem repeat (STR) loci HUMvWA, HUMFES, HUMTPO, HUMTH01 and D3S1359 was done in 220 unrelated individuals from the population of Isfahan province of IR Iran. The loci were genotyped using the polymerase chain reaction (PCR) followed by polyacrylamide gel electrophoresis (PAGE) and silver staining. The data demonstrated that the STR markers were all found informative i...
متن کامل